20 research outputs found

    Treewidth-Two Graphs as a Free Algebra

    Get PDF
    We give a new and elementary proof that the graphs of treewidth at most two can be seen as a free algebra. This result was originally established through an elaborate analysis of the structure of K_4-free graphs, ultimately reproving the well-known fact that the graphs of treewidth at most two are precisely those excluding K_4 as a minor. Our new proof is based on a confluent and terminating rewriting system for term-labeled graphs and does not involve graph minors anymore. The new strategy is simpler and robust in the sense that it can be adapted to subclasses of treewidth-two graphs, e.g., graphs without self-loops

    A machine-checked constructive metatheory of computation tree logic

    Get PDF
    This thesis presents a machine-checked constructive metatheory of computation tree logic (CTL) and its sublogics K and K* based on results from the literature. We consider models, Hilbert systems, and history-based Gentzen systems and show that for every logic and every formula s the following statements are decidable and equivalent: s is true in all models, s is provable in the Hilbert system, and s is provable in the Gentzen system. We base our proofs on pruning systems constructing finite models for satisfiable formulas and abstract refutations for unsatisfiable formulas. The pruning systems are devised such that abstract refutations can be translated to derivations in the Hilbert system and the Gentzen system, thus establishing completeness of both systems with a single model construction. All results of this thesis are formalized and machine-checked with the Coq interactive theorem prover. Given the level of detail involved and the informal presentation in much of the original work, the gap between the original paper proofs and constructive machine-checkable proofs is considerable. The mathematical proofs presented in this thesis provide for elegant formalizations and often differ significantly from the proofs in the literature.Diese Dissertation beschreibt eine maschinell verifizierte konstruktive Metatheorie von computation tree logic (CTL) und deren Teillogiken K und K*. Wir betrachten Modelle, Hilbert-Kalküle und History-basierte Gentzen-Kalküle und zeigen, für jede betrachtete Logik und jede Formel s, Entscheidbarkeit und Äquivalenz der folgenden Aussagen: s gilt in allen Modellen, s ist im Hilbert-Kalkül ableitbar und s ist im Gentzen-Kalkül ableitbar. Die Beweise bauen auf Pruningsystemen auf, welche für erfüllbare Formeln endliche Modelle und für unerfüllbare Formeln abstrakte Widerlegungen konstruieren. Die Pruningsysteme sind so konstruiert, dass abstrakte Widerlegungen zu Widerlegungen sowohl im Hilbert- als auch im Gentzen-Kalkül übersetzt werden können. Dadurch wird es möglich, die Vollständigkeit beider Systeme mit nur einer Modellkonstruktion zu zeigen. Alle Ergebnisse dieser Dissertation sind formalisiert und maschinell verifiziert mit Hilfe des Beweisassistenten Coq. In Anbetracht der Fülle an Details und der informellen Beweisführung in großen Teilen der Originalliteratur, erfordert dies teilweise tiefgreifende Veränderungen an den Beweisen aus der Literatur. Die Beweise in der vorliegenden Arbeit sind so aufgebaut, dass sie zu eleganten Formalisierungen führen

    A machine-checked constructive metatheory of computation tree logic

    Get PDF
    This thesis presents a machine-checked constructive metatheory of computation tree logic (CTL) and its sublogics K and K* based on results from the literature. We consider models, Hilbert systems, and history-based Gentzen systems and show that for every logic and every formula s the following statements are decidable and equivalent: s is true in all models, s is provable in the Hilbert system, and s is provable in the Gentzen system. We base our proofs on pruning systems constructing finite models for satisfiable formulas and abstract refutations for unsatisfiable formulas. The pruning systems are devised such that abstract refutations can be translated to derivations in the Hilbert system and the Gentzen system, thus establishing completeness of both systems with a single model construction. All results of this thesis are formalized and machine-checked with the Coq interactive theorem prover. Given the level of detail involved and the informal presentation in much of the original work, the gap between the original paper proofs and constructive machine-checkable proofs is considerable. The mathematical proofs presented in this thesis provide for elegant formalizations and often differ significantly from the proofs in the literature.Diese Dissertation beschreibt eine maschinell verifizierte konstruktive Metatheorie von computation tree logic (CTL) und deren Teillogiken K und K*. Wir betrachten Modelle, Hilbert-Kalküle und History-basierte Gentzen-Kalküle und zeigen, für jede betrachtete Logik und jede Formel s, Entscheidbarkeit und Äquivalenz der folgenden Aussagen: s gilt in allen Modellen, s ist im Hilbert-Kalkül ableitbar und s ist im Gentzen-Kalkül ableitbar. Die Beweise bauen auf Pruningsystemen auf, welche für erfüllbare Formeln endliche Modelle und für unerfüllbare Formeln abstrakte Widerlegungen konstruieren. Die Pruningsysteme sind so konstruiert, dass abstrakte Widerlegungen zu Widerlegungen sowohl im Hilbert- als auch im Gentzen-Kalkül übersetzt werden können. Dadurch wird es möglich, die Vollständigkeit beider Systeme mit nur einer Modellkonstruktion zu zeigen. Alle Ergebnisse dieser Dissertation sind formalisiert und maschinell verifiziert mit Hilfe des Beweisassistenten Coq. In Anbetracht der Fülle an Details und der informellen Beweisführung in großen Teilen der Originalliteratur, erfordert dies teilweise tiefgreifende Veränderungen an den Beweisen aus der Literatur. Die Beweise in der vorliegenden Arbeit sind so aufgebaut, dass sie zu eleganten Formalisierungen führen

    Constructive Completeness for Modal Logic with Transitive Closure

    Get PDF
    Classical modal logic with transitive closure appears as a subsystem of logics used for program verification. The logic can be axiomatized with a Hilbert system. In this paper we develop a constructive completeness proof for the axiomatization using Coq with Ssreflect. The proof is based on a novel analytic Gentzen system, which yields a certifying decision procedure that for a formula constructs either a derivation or a finite countermodel. Completeness of the axiomatization then follows by translating Gentzen derivations to Hilbert derivations. The main difficulty throughout the development is the treatment of transitive closure

    Completeness and Decidability Results for CTL in Coq

    Get PDF
    We prove completeness and decidability results for the temporal logic CTL in Coq/Ssreflect. Our basic result is a constructive proof that for every formula one can obtain either a finite model satisfying the formula or a proof in a Hilbert system certifying the unsatisfiability of the formula. The proof is based on a history-augmented tableau system obtained as the dual of Brünnler and Lange's cut-free sequent calculus for CTL. We prove the completeness of the tableau system and give a translation of tableau refutations into Hilbert refutations. Decidability of CTL and completeness of the Hilbert system follow as corollaries

    Completeness and Decidability of Converse PDL in the Constructive Type Theory of Coq

    Get PDF
    International audienceThe completeness proofs for Propositional Dynamic Logic (PDL) in the literature are non-constructive and usually presented in an informal manner. We obtain a formal and constructive completeness proof for Converse PDL by recasting a completeness proof by Kozen and Parikh into our constructive setting. We base our proof on a Pratt-style decision method for satisfiability constructing finite models for satisfiable formulas and pruning refutations for unsatisfiable formulas. Completeness of Segerberg's axiomatization of PDL is then obtained by translating pruning refutations to derivations in the Hilbert system. We first treat PDL without converse and then extend the proofs to Converse PDL. All results are formalized in Coq/Ssreflect

    Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium

    Get PDF
    We extend and consolidate the security justification for the Dilithium signature scheme. In particular, we identify a subtle but crucial gap that appears in several ROM and QROM security proofs for signature schemes that are based on the Fiat-Shamir with aborts paradigm, including Dilithium. The gap lies in the CMA-to-NMA reduction and was uncovered when trying to formalize a variant of the QROM security proof by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was confirmed by the authors, and there seems to be no simple patch for it. We provide new, fixed proofs for the affected CMA-to-NMA reduction, both for the ROM and the QROM, and we perform a concrete security analysis for the case of Dilithium to show that the claimed security level is still valid after addressing the gap. Furthermore, we offer a fully mechanized ROM proof for the CMA-security of Dilithium in the EasyCrypt proof assistant. Our formalization includes several new tools and techniques of independent interest for future formal verification results

    A Variant of Wagner's Theorem Based on Combinatorial Hypermaps

    Get PDF
    International audienceWagner's theorem states that a graph is planar (i.e., it can be embedded in the real plane without crossing edges) iff it contains neither K5 nor K3,3 as a minor. We provide a combinatorial representation of embeddings in the plane that abstracts from topological properties of plane embeddings (e.g., angles or distances), representing only the combinatorial properties (e.g., arities of faces or the clockwise order of the outgoing edges of a vertex). The representation employs combinatorial hypermaps as used by Gonthier in the proof of the four-color theorem. We then give a formal proof that for every simple graph containing neither K5 nor K3,3 as a minor, there exists such a combinatorial plane embedding. Together with the formal proof of the four-color theorem, we obtain a formal proof that all graphs without K5 and K3,3 minors are four-colorable. The development is carried out in Coq, building on the mathematical components library, the formal proof of the four-color theorem, and a general-purpose graph library developed previously

    Short proof of Menger's Theorem in Coq (Proof Pearl)

    Get PDF
    Menger's theorem is one of the cornerstones of graph theory, and Hall's Marriage Theorem, a straightforward consequence of Menger's Theorem, is one of the most applied graph-theoretic results. Following Göring's "Short proof of Menger's Theorem" we give formal proofs of Menger's theorem and of some of its consequences, including Hall's Marriage Theorem and Kőnig's Theorem, in the proof assistant Coq. Our proofs make use of the mathematical components library and a library for reasoning about paths in finite graphs developed previously
    corecore